ChemSep / Cape-Open Property Packages

Harry Kooijman & Ross Taylor ChemSep

CO-LaN AGM, Amsterdam, October 2015

CO-LaN AGM, Amsterdam, October 2015

Cape-Open Property Packages

Overview

- Introduction
- Implementation
- Testing & Validation
- **Case stories**
- **Conclusions & Outlook**

Introduction

Business case for Cape-Open Property Packages

Leverage existing property models: do what others cannot Cutting edge technology: from published to implemented in weeks Use without limitations: the same packages in all simulators

LEAN = As Fast / As Efficient / As Accurate / As Simple as can be

Introduction

Can we do this with reactive electrolyte models?

- \rightarrow no standards specification (yet)
- \rightarrow use of true / apparent species (= potential for problems?)

Example:

at the flowsheet level: CO_2 , H_2O

 \rightarrow

in the Property Package:

 CO_2 , H_2O , [H^+ , OH^- , HCO_3^- , CO_3^{--}] (equilibrium changes with p,T, pH)

Introduction

Time line

- 2013 Q3: CO-LaN sends out RFP for Consultancy Services
- 2013 Q4: CO-LaN agrees to support ChemSep proposal (80 hrs)
- 2014: delays due to unavailability UNISIM socket & resources
- Feb 2015: started implementation by Jasper van Baten
- Apr 2015: alpha version available, tested in COCO
- May 2015: finally test socket for UNISIM R430 available
 - \rightarrow Testing in target environment could finally commence
- 2015 Q3: CS/copp available online
- 2015 Q4: tests being finalized

Implementation

Approach

Fortran DLL-wrapper for existing Fortran libraries (non-reentrant) COPP C-wrapper (*AmsterCHEM*'s COM CAPE-OPEN Wizard):

- copies Fortran DLL (to enable multiple parallel calls)
- copies configuration-file (same)
- Adapt ChemSep GUI to define components & property models (configuration in existing text-format)
- Auto-generate species from apparent species & set of reactions (reactions only known inside the property package)

Ionic species after apparent species

Automatic back-conversion to apparent species

Implementation

Features:

Pure component property intrinsic data: casRegistryNumber, chemicalFormula, structureFormula, SMILESformula, criticalTemperature, criticalPressure, ...
Temperature Dependent Properties (with derivatives): idealGasEnthalpy
Mixture intensive properties (with <u>derivatives</u>): <u>Kvalue</u>, <u>FugacityCoeffient</u>, <u>LogKvalue</u>, <u>LogFugacityCoeffient</u>, <u>Enthalpy</u>, <u>EnthalpyF</u>, Entropy, EntropyF, MolecularWeight
Mixture physical / transport properties: Density, Volume, Viscosity, ThermalConductivity, SurfaceTension, Diffusivities

Flash types: T-p, T-VF, p-VF, p-H, p-S, p-HF (more coming)

Both Cape-Open 1.0 and 1.1 Support

Support editing & persistence (IPersistStream + IPersistPropertyBag)

Implementation

Messaging

Warnings / Errors written to logs

Debugging

Logs:

- ChemSep built in log (text dumps in temp folder)
- OATS and COLTT

Debuggers:

• GDB (not so sophisticated)

Testing

Fortran DLL: direct calls with Fortran test program

C DLL: Streams in COCO for flash and properties

Unit Operations: Compressor, Pump, Valve, HXCH, Column in COCO

Commercial Software: PRO/II, UNISIM, ...

Streams in COCO

test flash and properties

PRO/II	PRO/II v9.3.2 - test-C2-C5-col_v91_v91 <u>File Edit Input Run Output Tools Draw View Options W</u> indow <u>H</u> elp	
Flash + Distillation	Image: Image	a ↔ ↔ ■ ↓ ↑ ↓ ≗ • ♣ • ∅ • / ▲ • ⋑ • , i < → 里 ⊄ 0 ■ 금
Ethane, Propane, nButane, nPentane	SIMSCI - Thermodynamic Data UOM Range Help Overview Status Notes Selection of Property Calculation System Category: Most Correlations Special Packages Electrolyte Actions for Selected Property Calculation System Category: Most Correlations Special Packages Category: Most Correlations Special Packages Category: Category: Most Correlations Special Packages Category: Category: Most Correlations Special Packages Category: Category: Most Correlations Special Packages Category: Category: Most Correlations Special Packages Category:	25 15.80 15.84 20.520 TOWNOV 35.550 TOWNOV 20.520 TOWNOV C2-C5 Property Package Properties Vendor Info Components Thermo Properties Phases Description ProgID : ChemsepCOPP. ThermoSystem.1 Name : ChemSep Description: Description: ChemSep CAPE-OPEN v1.0 Thermo System (c) Chemsep 2015, h CapeVersion : 1.00 ComponentVersion : 1.0.0 VendorURL : http://www.chemsep.com/ About : Copyright (C) ChemSep 2015
	View Delete Duplicate Rename	
	Select a thermodynamic property calculation system	OK Cancel

UNISIM Design

Distillation T specification

Ethane, Propane, nButane, nPentane

Case Stories

Safety in Air Separation Units / PPR78 Tracking impurities in MEG plants / PSRK

Safety assessments of ASU's

Failure of the adsorption Pre-Purification Units (PPU) in Shell GTL plant at Bintulu to remove light hydrocarbons from haze particle desorption:

Amount removed by PPU
0%
30-70%
30-70%
30-70%
30-100%

Determine intake limits on Ethane & Propane to remain below recommended 450 ppm Methane equivalent in the O₂ reboiler

Use <u>25 August 2015</u> extension of the Predictive Peng-Robinson

ASU simulation, replace existing property pack with CS/copp

PPR78 provides similar solution as PR with specially tuned BIP's

Added Ethane & Propane traces and check limit values

Considerable build-up observed

Is this build-up dependent on plant operation?

Argon production not much of influence

Is this build-up dependent on plant operation?

Fluctuations in Oxygen product purity can lead to higher build-up

Take Away

CS/copp handles compressors, expanders, HXCH, and distillation New enhanced-PPR78 method available in matter of week(s) Enhanced-PPR78 can describe non-ideal cryogenic O_2 / Ar Quick assessment of light HC traces possible with e-PPR78

Note:

Stronger build-up when gaseous Oxygen produced Trace levels < 1ppm with online (FTIR) measurement

Tracking impurities in MEG / PSRK

Nonideal thermo for trace impurities

Air ingress in vacuum columns oxidizes MEG to e.g. Acetic Acid

CO-LaN AGM, Amsterdam, October 2015

Tracking impurities in MEG / PSRK

Replaced existing package with Predictive-SRK (PSRK)

Added trace Acetic Acid (AA) and see where it builds up / leaves

CO-LaN AGM, Amsterdam, October 2015

Tracking impurities in MEG / PSRK

Take Away

CS/copp handles reactors and recycles with no performance loss

PSRK allows for quick assessment of oxygenates in MEG process

Conclusions & Outlook

CS/copp:

Available in ChemSep v7 since Q3/2015

No observed performance losses

Free download in ChemSep LITE http://www.chemsep.com/ (does not include electrolytes)

Outlook:

Integration with reaction standard specification

Improve speed & robustness

More flash types

Questions?

Backup-Slide

Electrolyte specification:

- Set of species dependent on the selected apparent species AND selected set(s) of reaction packages
- Not always all species desired everywhere
- Equilibrium and rates to be stored separately / independently per reaction

Backup-Slide

Feedback: selection/definition of packages in various software (e.g. UNISIM Design) needs to be simplified

CO-LaN AGM, Amsterdam, October 2015