

ChemSep Tutorial: Distillation with Hypothetical Components

Harry Kooijman and Ross Taylor

Here we use *ChemSep* to solve a complex multicomponent distillation problem presented in a paper entitled *Multistage Multicomponent Separation Calculations using Thermodynamic Properties Evaluated by the SRK/PR Equation of State*, by M.K. Shah and P.R. Bishnoi (*Canadian Journal of Chemical Engineering*, **56**, pp478-486).

The specifications for this problem provided in the paper cited are summarized in the figure below.

This column is used to recover a paraffin cut from straight kerosene. The feed is a mixture of "hypothetical" compounds with the following flowrates:

Mole flows (mol/h)	
Нур-А	12.900
Hyp-B	11.600
Нур-С	5.550
Hyp-D	5.200
Hyp-E	10.500
Hyp-F	10.030
Hyp-G	9.650
Нур-Н	9.370
Hyp-l	8.770
Нур-Ј	5.080
Нур-К	3.340
Hyp-L	7.980

Shah and Bishnoi do not actually specify a time unit in their paper; all flows are given in mol. We have assumed a time unit of one hour here, but note that all relative flows are unchanged by this arbitrary choice.

The specifications made in this case are summarized in the table below:

Variable	Number	Value
Number of stages	1	40
Feed stage locations	1	27
Component flows in feed 1	<i>c</i> = 12	See table above
Feed 1 pressure	1	138 kPa
Feed 1 vapor fraction	1	1
Pressure on all stages	N = 40	138 kPa
Heat duty on all other stages except reboiler and condenser	N - 2 = 38	0
Reflux ratio	1	6.6
Liquid sidestream flow from stage 3	1	58 mol/h
Total	96	

In addition, we have assumed that the pressure of the reflux divider is the same as the pressure of the condenser, the heat loss from the reflux divider is zero, and the reflux temperature is the boiling point of the condensed overhead vapor.

The number of variables specified above is one less than is actually required to satisfy the total number of degrees of freedom for this column. Shah and Bishnoi do not state their final specification; we have, therefore chosen to specify the bottoms flow rate to be consistent with the values given in their stream table.

Property Data Creation

To proceed we must first create a databank of the properties of the various hypothetical compounds that make up the mixture to be separated in this column. Shah and Bishnoi tell us that the feed mixture is divided into twelve hypothetical components based on its True Boiling Point (TBP) curve and these components have the derived properties shown in the table below.

Name	Tb (C)	API Gravity	Tb (K)	SG
Нур-А	126	56.92	399.15	0.75
Нур-В	156	53.23	429.15	0.77
Нур-С	170	51.08	443.15	0.78
Hyp-D	178	50.14	451.15	0.78
Нур-Е	186	48.98	459.15	0.78
Hyp-F	198	47.61	471.15	0.79
Hyp-G	212	46.26	485.15	0.8
Нур-Н	224	44.71	497.15	0.8
Hyp-I	238	44.06	511.15	0.81
Нур-Ј	245	42.33	518.15	0.81
Нур-К	257	40.64	530.15	0.82
Hyp-L	280	38.16	553.15	0.83

The first three columns of this table are directly from the paper by Shah and Bishnoi, the fourth column represents the conversion of the normal boiling point in Celcius (column 2) to Kelvin. The fifth column contains the results of the conversion of the API gravity in column 3 to the specific gravity from the formula:

$$SG = \frac{141.5}{API + 131.5}$$

The reasons for carrying out this conversion will soon become clear.

Modeling a system such as this using the Peng-Robinson or SRK equations of state – which is what we are about to do – requires the creation of a databank with the necessary physical properties. This includes the critical temperature and pressure, the acentric factor, and the ideal gas heat capacity, for example.

ChemSep can create the necessary databank for us given the information in the table above.

Start the Pure Compound Data (PCD) manager by clicking on the PCD manager icon (the benzene ring). Click on *File* and then click *New* to create a completely new databank (we do not advocate adding hypothetical compounds to the existing databank of data for real compounds).

PCD File Manager				
File Edit Tools Help				
New Ctrl+N				
🗁 Open Ctrl+O				
B Save Ctrl+S				
Save As Shift+Ctrl+S	trl+S			
Close Ctrl+F4	Component Critical Molecular T Correlation	s Group Data EOS Miscellaneous Log		
Exit Alt+X	Кеу	Value		
	Name			
	Index	x		
	CAS number			
	SMILES			
	Structure			
	Molecular weight (kg/kmol)	×		
	Family	×		
	Formula			
☆ Up × Remove				
Add New				
Search				
Sodicit				
- not matched - Find Next				
c:\con680\ncd\chemsen1.ncd				
o. toopood too too too too too too				

Next, click on *Edit* and then on *Add Pseudo*:

PCD	File Manager			
e Ec	dit Tools Hel	р		
	Undo	Ctrl+Z		
Infi	Redo	Ctrl+Y		
Co	Cut	Ctrl+X		
	Сору	Ctrl+C	Component Critical Molecular T Correlations	Group Data EOS Miscellaneous Log
	Paste	Ctrl+V		
	Delete	Ctrl+Del	Key	Value
	Select all	Ctrl+A	Name	×
	Unselect all	Ctrl+U		
	Move up	Ctrl+Up	SMILES	
÷	Move down	Ctrl+Down	Structure	
_	Add new		Molecular weight (kg/kmol)	×
	Web import	Ctrl+W	Family	8
	Import from file	e	Formula	
	Update from fil	le		
	Add Pseudo	Ctrl+P		
_	Export compon	nent to file		
	Extract property	y to file		
Search	h			
	- t-bd	Find Next		
- not m	hatched -			
		•		
сор68	3U\pcd\chemsep1.	pcd		

This brings up a separate panel that will allow us to add pseudo-compounds or hypothetical compounds to the databank:

Pseudo Component Generation	
I → Tb + SG	Reverse order Tb (K) SG
Tc	
Pc 🔽	
Vc 🔽	
w _	
Mw	
Name T[Tb] [C]	
[Tb][SG][Mw][API][K] [C][H][S][EE]	
CplG	
ViscL	
kL 🗾	
CAS# 999TTT-EE-C	
Clear	
Lienerate	Lancel

Now we need to record the normal boiling point and specific gravity of our collection of hypothetical compounds given in the table above (now it will be clear why it was necessary to convert the boiling point data to Kelvin and the API gravity to specific gravity).

To enter this information click in the table to the upper right of the panel shown above and start typing. Every time you type something new in the first line a new line will appear below it, ready for the data for the next hypothetical compound:

	🗖 Reverse	order
	ТЬ (К)	SG
T.	→ 399.15	

There is, however, a quicker way to record the data if we have used a spreadsheet program to record the basic data and do any necessary data conversions (as we have for this problem).

	Α	В	С	D	E	
1						
2		Tb(C)	API	Tb (K)	SG	
3	Hyp-A	126.0	56.92	399.15	0.751	
4	Hyp-B	156.0	53.23	429.15	0.766	
5	Hyp-C	170.0	51.08	443.15	0.775	
6	Hyp-D	178.0	50.14	451.15	0.779	
7	Hyp-E	186.0	48.98	459.15	0.784	
8	Hyp-F	198.0	47.61	471.15	0.790	
9	Hyp-G	212.0	46.26	485.15	0.796	
10	Hyp-H	224.0	44.71	497.15	0.803	
11	Hyp-I	238.0	44.06	511.15	0.806	
12	Hyp-J	245.0	42.33	518.15	0.814	
13	Нур-К	257.0	40.64	530.15	0.822	
14	Hyp-L	280.0	38.16	553.15	0.834	
15						

Highlight the block of relevant data in the spreadsheet:

Press *Ctrl-C* and click in the first cell of the table to the top right of the *Pseudo Component Generation* panel. Then press *Ctrl-V*.

🔕 Pseudo Component Generation		
● Tb+SG	Reverse orde	er
	ТЬ (К)	SG
To	399.15	0.751
	429.15	0.766
Pc	443.15	0.775
	451.15	0.779
Vc 🗾 💌	459.15	0.784
	471.15	0.790
	485.15	0.796
Mw	497.15	0.803
	511.15	0.806
Name T[Tb][C]	518.15	0.814
	530.15	0.822
[10][30][MW][AFI][K][C][H][3][EE]	553.15	0.834
CpIG		

The next task is to select the methods to be used to estimate the properties listed on the left hand half of this panel. Shah and Bishnoi report using the method of Cavett for the critical temperature and pressure, but they do not tell us what they used for the acentric factor or for any of the other properties. The image below shows what we used for this exercise:

Pseudo Component Generation				
10 10 + 30	ТЬ (К)	Isg		
Caugh 1002	399.15	0.751		
	429.15	0.766		
Pc Cavett 1962 💌	443.15	0.775		
	451.15	0.779		
Vc Riazi-Daubert 1987 💌	459.15	0.784		
	471.15	0.790		
W 1.0000 200 1010	485.15	0.796		
Mw Riazi-Daubert 1980 💌	497.15	0.803		
	511.15	0.806		
Name Hyp-[EE]	518.15	0.814		
	530.15	0.822		
	553.15	0.834		
CpIG Riazi-Daubert 1980 💌	ļ			
ViscL Twu 1984				
kL Riazi-Faghri 1985 💌				
CAS# 999TTT-EE-C				
Clear				
Generate	Cancel			

Note, in particular, the cell labeled *Name*. This cell specifies how the hypothetical compounds will be named in the data file soon to be created. Compound names can be generated using a variety of labels including:

```
Normal boiling point – [Tb]
Specific gravity – [SG]
Molecular weight – [Mw]
API gravity – [API]
Numerical exponent (01, 02, etc) – [EE]
```

In this case we have elected to name the compounds Hypo-EE where the EE is the sequence of numbers starting at 01.

Click on the button *Generate* to close this window and create the compound data records which will appear in *PCDmanager* as shown below:

formation: PCD library generated on	3/13/2011 11:13:15 AM by rtaylor	
omponents (12):	- Hup-12	
lvp-01	Component Critical Molecular I Correl	ations Group Data EOS Miscellaneous Log
lyp-02		ations anoup bata 200 miscellaneous 200
iyp-03 Ivn-N4	Key	Value
lyp-05	Name	Нур-12
lyp-06 lup-07	Index	25713
lyp-08	CAS number	999553-12-6
lyp-09 June 10	SMILES	
lyp-11	Structure	
lyp-12	Molecular weight (kg/kmol)	210.984
	Family	PSEUDO
	Formula	
	1	
A Un X Bemove		
🖓 Down 🛛 Add New		
earch		
Find Next		

Note the list of compound names in the panel to the left of the screen above. To the right appears the first tab showing compound name, index number, CAS number, molecular weight, and compound family, all generated using the methods selected earlier or designated automatically by the compound data manager. All compounds generated in this way are automatically defined as belonging to the family of *pseudo-compounds*. The CAS number is created automatically according to the formula shown on the pseudo-compound generation panel shown above. Pseudo-compounds do not normally have a genuine CAS number, but this number is used for internal purposes by *ChemSep*, so it is necessary to create one here.

The entire set of molecular weights is in reasonable agreement with those given by Shah and Bishnoi although they do not specify exactly how those were calculated. The method used here (that of Riazi and Daubert (1980) was not available to Shah and Bisnoi because their paper was published was published two years before. We leave it as an exercise for our readers to see how much difference there is with the other methods of estimating the various properties.

Other properties (including the very important critical temperature and pressure and the ideal gas heat capacity are shown in the series of screen images below that illustrate other tab panels in *PCDmanager*.

PCD File Manager		
File Edit Tools Help		
Information: PCD library generated on 3/1;	2/2011 8:41:41 PM by rtaylor	
Components (12):		
	Hyp-12	
Hyp-U1 Hyp-02	Component Critical Molecular T Correlations Grou	p Data EOS Miscellaneous Log
Нур-03	Кец	Value
Нур-04 Нур-05	Critical temperature (K)	735.821
Нур-06	Critical pressure (Pa)	1.75839F+06
Нур-07 Нур-08	Critical volume (m3/kmol)	0.904049
Нур-09	Critical compressibility factor (-)	0.259836
Hyp-10 Hyp-11	Normal boiling point (K)	553.150
Hyp-12	Melting point (K)	×
	Triple point temperature (K)	×
	Triple point pressure (Pa)	×
)	
	Estimate:	A == 1
🛧 Up 🗙 Remove	Click here to estimate properties (no UNIFAC)	 Apply
	Order by property Order by meth	hod
C Down Add New		
Search		
Find Next		
- not matched -		
▼		
c:\cop680\pcd\chemsep1.pcd [CHANGED]		

🔞 PCD File Manager				
File Edit Tools Help				
Information: PCD library generated on 3/12	/2011 8:41:41 PM by rtaylor			
Components (12):				
	Hyp-12	· · · · · ·		
Нур-01 Нур-02	Component Critical Molecular T Correlations Group	p Data EOS Miscellaneous Log		
Hyp-03	Keu	Value		
Hyp-04 Hyp-05	Liguid molar volume at normal boiling point (m3/kmol)	0.256409		
Hyp-06	Acentric factor (-) 0.250405			
Hyp-08	Radius of gyration (m)	6.46627E-10		
Hyp-09 Hyp-10	Solubility parameter (J0.5/m1.5)	13979.2		
Hyp-11	Dipole moment (Coulomb.m)	×		
Hyp-12	Van der Waals volume (m3/kmol)	×		
	Van der Waals area (m2/kmol)	×		
	IG heat of formation (J/kmol)	×		
	IG Gibbs energy of formation (J/kmol)	x		
	IG absolute entropy (J/kmol/K)	×		
🛧 Up 🗙 Remove	Heat of fusion at melting point (J/kmol)	×		
	Standard net heat of combustion (J/kmol)	1.04365E+10		
🕂 Down Add New				
	Estimate:			
Search		 Apply 		
Find Next	Order by property Order by method			
· · · · ·				
c:\cop680\pcd\chemsep1.pcd [CHANGED]		line and the second sec		

PCD File Manager					
File Edit Tools Help					
Information: PCD library generated on 3/1	2/2011 8:41:41 PM by rtaylor				
Components (12):					
	-Hyp-12				
Hyp-01 Hup-02	Component Critical Molecular T Correlations Gro	oup Data EOS Miscellaneous Log			
Hyp-03	Ken	Value			
Hyp-04 Hup-05	COSTLD obstractoristic volume () (*) (m2/kmol)	0.962026			
Hyp-06	Lennard Jones diameter (m)	9.092205.10			
Hyp-07	Lennard Jones georgy (K)	275 490			
Нур-09	Packett parameter ()	0.250020			
Hyp-10	Fuller et al. diffusion volume (.)	217 229			
Hyp-11 Hyp-12	Surface tension at normal bailing point (N/m)	0.00072020			
	Paracle tension at normal boling point (w/m)	0.00572050			
	Parachol (kgo.20.115780.57kinol)	0.0603332			
	Specific gravity (-)	×			
	Unaige (-)	0.250400			
,		0.236403			
The second secon					
D Daving And Name		······································			
Add New		*			
Count	Estimate:				
search		Apply			
Find Next	,				
c:\cop680\pcd\chemsep1.pcd [CHANGED]		li l			

One last change, before we save the file is shown below. Here we have renamed the compounds so that they are identified by the sequence of letters starting with *A*. This change is not necessary and is done here solely to be consistent with the names used by Shah and Bishnoi.

nformation: PCD library generated o	n 3/13/2011 11:13:15 AM by rtaylor	
Components (12):	Нур-L	
Нур-А Нур-В	Component Critical Molecular T Correla	ations Group Data EOS Miscellaneous Log
Hyp-C Hup-D	Key	Value
Нур-Е	Name	Нур-L
Hyp-F Hup-G	Index	25713
нур-н	CAS number	999553-12-6
Hyp-I Hup-I	SMILES	
Нур-К	Structure	
Hyp-L	Molecular weight (kg/kmol)	210.984
	Family	PSEUDO
	Formula	
Up X Remove Add New		
not matched - Find Next	1	

In order to use this new compound data bank in column simulations we must save it. Click on *File* and then select *Save As:*

🔕 ChemSep	PCDmanager - S	ShahBishnoi_Hypothetical.pcd				
File Edit	Tools Help					
🗋 New	Ctrl+N					
🗁 Open	Ctrl+O	ted on 3/13/2011 11:13:15 AM by rtaylor				
Save	Ctrl+S					
Save As	Shift+Ctrl+S					
Close	Ctrl+F4	Component Critical Molecular T Correlations Group Data EOS Miscellaneous Log				
Exit	Alt+X	Key Value				
Hyp-E		Name Hyp-L	_			
Hyp-F Hun-G		Index 25713				
Hyp-H		CAS number 999553-12-6				
Hyp-I Hup-I		SMILES				
Нур-К		Structure				
Hyp-L		Molecular weight (kg/kmol) 210.984				
		Family PSEUDO				
		Formula				
		,				

This will bring up the file save window where we give the file a name and find somewhere to save it:

Save Pure Co	mponent Data fil	e		×
Save in:	Dcd	•	+ 🗈 💣 📰 🕇	
œ.	Name	*	Date modified	Туре
Recent Places	chemsep1		9/20/2010 9:33 AM	Paint Sho
	Dece 1		3/8/2011 6:33 PM	Paint Sho
Deskton	pseudo1		2/22/2011 2:35 PM	Paint Sho
Computer				
Network				
	•	III		F
	File name:	ShahBishnoi_Hypothetical.pcd	•	Save
	Save as type:	PCD Libraries (*.pcd)	-	Cancel
L				

ChemSep pure compound data banks use the extension *pcd*. These three letters are sometimes used as the extension for files used by the program *Paint Shop*. It is for this reason that we see in the image above that our databank files appear to be associated with *Paint Shop*. We can always use the facilities of Windows to re-assign our *pcd* file to *ChemSep*, but we have not bothered to do that here.

The new data bank now is ready for use and we can proceed to model the column described in the paper by Shah and Bishnoi.

Compound Selection

We begin by returning to *ChemSep* and selecting compounds. Click on *Components* in the list on the left. Then, use the *Browse* button to locate the compound data file that we have just created:

Look in	: 🚺 Tutorial_Bi	shnoi_Hypothetical	-	🗢 🖻 💣 🏢	•
Ca.	📰 ShahBishn	oi_Hypothetical			
Recent Places					
Desktop					
Libraries					
Computer					
Network					
					-

Select this file (this will return us to the *ChemSep* component selection panel which should now look something like this:

- ChemSep (TM) v6.80)		
File Edit Solve An	alysis Databanks Tools	Help	
🗅 🖻 🖬 🕨 🍣 🌢			
✓ Title ✓ Components ✓ Operation ✓ Properties ✓ Feeds ✓ Specifications	Components Select Components Component databank: Find	C:\ChemSep_\chemsep papers\Tutorial_Bishnoi_Hy PCD library generated on 3/13/2011 11:13:15 AM by rta	Browse Advanced search
⊕ × Results	Componente in databank:	Selected compon	cente in cimulation:
- Units - Solve options - Paths	Name Hyp-A Hyp-B Hyp-C Hyp-C Hyp-F Hyp-F Hyp-F Hyp-G Hyp-J Hyp-X Hyp-F	Component(s): Add Component(s): Add Component(s): Component(s	L# File Lc
Saved Not conver	rged	Add New Pseudo's Show	•

We can select all of these compounds in one go by proceeding as follows:

Click on the first compound in the list to the left of the compounds panel. Hold down the *Shift* key Click on the name of the last compound in the list.

We should not see all (except the first) compounds highlighted:

🕂 ChemSep (TM) v6.80					
File Edit Solve Ana	alysis Databanks Tools H	lelp			
``````````````````````````````````````		D 🖪 🖪 🥎			
✓ Title     ✓ Components     ✓ Operation     ✓ Properties     ✓ Specifications     ✓ Properties     ✓ Feeds     ✓ Yesults     Units     Solve options     Paths	Components  Select Components  Component databank:  Find  Components in databank:  Name  Hyp-A  Hyp-B  Hyp-C  Hyp-C  Hyp-F  Hyp-F  Hyp-F  Hyp-H  Hyp-I	CD library generated c	p papers\Tutorial_Bishnoi_Hy on 3/13/2011 11:13:15 AM by r Selected compr Component(s): Add Component(s): Identifier Substitute Remove All	Browse taylor onents in simulation L#	Advanced search Sort File Lc
	Hyp-I Hyp-K Hyp-K	Þ	C Up     Down     Add New     Pseudo's     Show		•
Saved Not converg	jed				///

Click on the *Add* button to include all of these compounds in the simulation.

Components in databank:	S	elected componen	its in simulation:		
Name	Component(s):	Identifier	L#	File	Lc
Нур-А		Hyp-A	25198	c:\chemsep_\	chei 1
Hyp-B	Add	Hyp-B	25455	c:\chemsep_\	chei 2
Hyp-C		Hyp-C	25712	c:\chemsep_\	chei 3
Hyp-D	Remove	Hyp-D	25969	c:\chemsep_\	chei 4
Hyp-E		Hyp-E	26226	c:\chemsep_\	chei 5
Hyp-F	Substitute	Hyp-F	26483	c:\chemsep_\	chei 6
Hyp-G		Hyp-G	26740	c:\chemsep_\	chei 7
Hyp-H	Remove All	Нур-Н	26997	c:\chemsep_\	chei 8
Hyp-I		Hyp-I	27254	c:\chemsep_\	chei 9
НурЈ	ъ̀ Up	Нур-Ј	25199	c:\chemsep_\	chei 10
Нур-К		Нур-К	25456	c:\chemsep_\	chei 11
Hyp-L	Down	Hyp-L	25713	c:\chemsep_\	vchei 12

# Operation

We select an *Equilibrium Column* and create a column configuration to match that shown above.

File       Edit       Solve       Analysis       Databanks       Tools       Help         Image: Solve       <	T ChemSep (TM) - Bishnoi_column01.sep	J
Image: Components       Image: Components	File Edit Solve Analysis Databanks Tools Help	
✓ Title       ✓ Operation         ✓ Components       ✓ Select Type of Simulation         ✓ Properties       ○ Flash         ✓ Thermodynamic       ○ Equilibrium column         ✓ Physical properti       ○ Nonequilibrium column         ✓ Physical properti       ○ Nonequilibrium column         ✓ Physical properti       ○ Nonequilibrium column         ○ Specifications       ○ Dynamic column         ✓ Pressures       ○ Uperation:         ✓ Pressures       ○ Dynamic column         ✓ Pressures       ○ Configuration         ✓ Efficiencies       ○ Condenser:         ✓ Sidestreams       Condenser:         ✓ Column specs       Partial (Liquid product)		
Image: Second stage second	✓ Title       ✓ Operation         ✓ Components       Select Type of Simulation         ✓ Properties       C Flash         ✓ Thermodynamic       C Equilibrium column         ✓ Physical propertion       C Nonequilibrium column         ✓ Properties       C Configuration         ✓ Properties       Configuration         ✓ Pressures       Configuration         Ø perations       Condenser:         ✓ Sectifications       Condenser:         ✓ Sidestreams       Condenser:         ✓ Sidestreams       Reboiler:         Paths       Paths	
Changed Converged 6 iterations C:\ChemSep_\chemsep papers\Tutorial_Bishnoi_Hypothetical\Bishnoi_column01.sep	Changed Converged 6 iterations C:\ChemSep_\chemsep papers\Tutorial_Bishnoi_Hypothetical\Bishnoi_column01.sep	

### Thermodynamic Model Selection

In their paper, Shah and Bishnoi use the SRK, PR EOS models as well as the Chao-Seader method to model a series of columns, one of which is the subject of this tutorial. For this tutorial we will make the selections shown below:

- ChemSep (TM) - Bishn	1 ChemSep (TM) - Bishnoi_column01.sep					
File Edit Solve Analy	ysis Databanks To	ols Help				
_ ₽₽₽₽	♦ X UTE	🖉 🖸 🖪 🔝 🥥				
Title Components	✓ Thermodynamics ─Select Thermodynam	V Physical properties	✓ Reactions			
Properties	K-value	EOS 💌	Show enth	alpy/exergy settings:		
Physical properti     Reactions	Equation of state	Peng-Robinson 76 💌				
	Activity coefficient	T				
✓ Arialysis     ✓ Pressures     ✓ Heaters/Coolers	Vapour pressure	<b></b>				
✓ Efficiencies	Enthalpy	Peng-Robinson 76 💌				
Column specs	Select Thermodynam	ic Model parameters (when	required)			
⊡ √ Results — Tables	Peng-Robinson 7	76 💌 Peng-Robinson 71	6	T dependence		
Graphs McCabe-Thiele	Reset	i-i	k-ij	A		
- Units		Нур-А - Нур-В	9.4123E-05			
- Solve options	🗁 Load	Нур-А - Нур-С	2.0086E-04			
Paths		Hyp-A - Hyp-D	2.7457E-04			
	Save		3.6127E-04			
		Hyp-A - Hyp-F	5.0400E-04			
	Correlation		6.8909E-04			
		Hun-A - Hun-I	0.00107896			
		HVD-A - HVD-J	0.00122639	-		
۰ III ا		1				
Changed Converged 6	iterations C:\Cł	nemSep_\chemsep papers\	Tutorial_Bishnoi_	Hypothetical\Bishnoi_column01.sep		

We have selected the Peng-Robinson EOS for this exercise.

Since binary interaction parameters are not available for this system from experimental data we have used the *Correlation* button to estimate them. Most of these interaction parameters are small and will not have a significant impact on the results of a simulation.

## Feeds

- ChemSep (TM) - Bishnoi_	column01.sep	
File Edit Solve Analysis	Databanks Tools	Help
	×  <b>!†</b>  T E  <b>@</b>  [	
Title	🖌 Feeds	
	Feed Stream(s) Specification	ns
	Insert F	Remove Molar flows 💌
✓ Reactions	Feed:	1
Feeds	Name	Feed1
	Stage	27
Analysis	Two-phase feed	Split
Heaters /Coolers	State	p&V
Efficiencies	Pressure [kPa]	138.000
	Vapour fraction [-]	1.00000
	Elemperature (N)	
	Hup-A	12 9000
- Tables	Hup-B	11 6000
Graphs	Hyp-C	5,55000
McCabe-Thiele	Hyp-D	5.20000
Units	Нур-Е	10.5000
- Solve options	Hyp-F	10.0300
- Paths	Hyp-G	9.65000
	Hyp-H	9.37000
	Hyp-I	8.77000
	НурЈ	5.08000
	Hyp-K	3.34000
	Total flowrate	99.9700
	<u>j rotarnowiate</u>	100.0100
Saved Not converged	C:\ChemSep	p_\chemsep papers\Tutorial_Bishnoi_Hypothetical\Bishnoi_column01.sep

The feed vapor fraction is set to unity to match the specification by Shah and Bishnoi that the feed is at its dew point.

## Pressures

The column pressure is constant at 138 kPa:

Calvery Description Cale Stress					
Column Pressure Specifica	Buons				
Condenser pressure	138.000	(kPa)			
Column pressure	Constant pressure	•			
Top pressure	138.000	(kPa)			
Pressure drop / stage	×	(kPa)			
Bottom pressure	×	(kPa)			

### **Heaters and Coolers**

There are no heaters and coolers other than the condenser and reboiler:

1	⊏Define Column Heat Exc	changers	
	Column heat loss	0.000000	(J/s)
	Name column duty	Q flash	
	Stage heat exchang	ers:	
	Insert	Remove	

#### Efficiencies

The efficiencies are set to their default value of unity and so this panel is not shown here.

### Sidestreams

The sidestream is specified as shown in the next image:

Sidestreams	
Insert	Remove
Sidestream:	1
Name	Sidestream1
Stage	12
Phase	Liquid
Туре	Total flow
Flow ratio (-)	
Flowrate (mol/h):	58.0000

### **Column Specifications**

Shah and Bishnoi specified the reflux flow ratio (with a value of 6.6). However, as noted above, they do not state what "other" variable was specified to completely account for the number of degrees of freedom for this column. (As an aside we note that Shah and Bisnoi are similarly vague in their descriptions of four other test problems. Interestingly, they do tell us that they modeled the total condenser as a partial condenser with a very small vapor flow rate. This was the only way their computer program could model columns with a total condenser and does not complete the missing degree of freedom.) The tables of results given in the original paper of Shah and Bisnoi allow one to invent several possible additional specifications (such as the bottoms flow rate, component recoveries or purities in the top or bottom products, reboiler or condenser heat duties and so on). We have selected the bottoms rate and the column specifications are then as follows:

🕂 ChemSep (TM) - Bishn	oi_column01.sep								
File Edit Solve Analysis Databanks Tools Help									
✓ Title ✓ Components ✓ Operation	✓ Title       ✓ Analysis       ✓ Pressures       ✓ Heaters/Coolers       ✓ Efficiencies       ✓ Sidestreams       ✓ Column specs         ✓ Components       ✓ Column Product Specifications								
Properties	Top product name	Top Condenser dut	ty name Qcondenser						
<ul> <li>Physical properti</li> <li>Reactions</li> </ul>	Top specification	Reflux ratio	▼ = 6.80000	0					
✓ Feeds ✓ Specifications ✓ Analysis ✓ Pressures									
← ✓ Heaters/Coolers ← ✓ Efficiencies	Bottom product name	Bottom Reboiler duty r	name Qreboiler						
Sidestreams Column specs Results Graphs Graphs	Bottom specification	Bottom product flow rate	▼ = 11.9800	(mol/h)					
Units	Product Guesses (optional)	)							
Solve options Paths	Use guesses for init.	, talization <u>Reset</u>							
Saved Not converge	d C:\ChemSe	ep_\chemsep papers\Tutorial_Bishnoi_H	lypothetical\Bishnoi_column01.sep						

This completes the entry of the problem specifications. Save the file.

#### Solving the Simulation

With 40 stages and 12 components the equilibrium stage model has 1080 equations to be solved for 1080 variables (the unknown flow rates, temperatures, mole fractions). Convergence was obtained in just 7 iterations.

Running simulator - Bishnoi_column01.sep	
* Missing Cp gas 1     * Missing L-density     Determining feed conditions     Solving PV flash     Run level: Initialization     Generating initial flow profiles     Generating initial composition profiles     Init 140 milliseconds     Run level: Complete model     Iteration Error     0 5.2687     1 5.2691     2 5.1748	•
3       4.7273         4       3.4406         5       0.7846         6       -4.0918         Run level: Report       Convergence obtained in 6 iterations         Time       296 milliseconds         FixMem driver done       Process ended	
Done	

#### Results

The stream table is shown below:

Stream	Feed1	Тор	Bottom	Sidestream	<b>^</b>
Stage Pressure (kPa)	27 138,000	1 138.000	40 138,000	12 138,000	=
Vapour fraction (-)	1.00000	0.000000	0.000000	0.000000	
Enthalpy (J/mol) Entropy (J/mol/K)	62116.2 173.084	-8430.38	55276.6	13519.2	
Mole flows (mol/h)					
Нур-А	12,9000	11.9401	2.8686E-14	0.959895	
Hyp-B	11.6000	9.75401	2.6559E-11	1.84599	
Hyp-C	5.55000	3.92998	4.0392E-10	1.62002	
Hyp-D	5.20000	2.50186	2.8998E-09	2.69814	
Hyp-E	10.5000	1.75079	4.7124E-08	8.74921	
Hyp-F	10.0300	0.110428	1.1242E-06	9.91957	
Hyp-G	9.65000	0.00276555	5.3835E-05	9.64718	
Нур-Н	9.37000	1.0416E-04	0.00175358	9.36814	
Hyp-I	8.77000	1.9676E-06	0.130785	8.63921	
Нур-Ј	5.08000	1.3466E-07	0.749787	4.33021	
Нур-К	3.34000	2.1666E-10	3.11787	0.222135	
Hyp-L	7.98000	2.6057E-16	7.97976	2.4612E-04	
Total molar flow	99.9700	29.9900	11.9800	58.0000	-
•					Þ

The component flows differ slightly from those given by Shah and Bishnoi, but the essential nature of the component split is preserved. Note that the sidestream flow is significantly greater than either the top or bottom product flow rate.

The material and energy balance table shows the main mass and energy flows into and out of the column:

Mass and Energy Balances				<u> </u>
Stream / Apparatus	Mass (mol/h) En	ergy (J/s)	Exergy (J/s)	
Feed1 Top Bottom Sidestream1 Qcondenser Qreboiler	99.9700 -29.9900 -11.9800 -58.0000	1724.93 70.2299 -183.948 -217.810 -2629.55 1236.35	291.891 79.5256 -22.0400 136.349 -812.278 576.684	
Balance	0.000000	0.199951	250.133	+
Thermodynamic efficiency = Component discrepancies: abs	0.485033 olute (mol/h), relat	ive ( )		E
Hyp-A Hyp-B Hyp-C Hyp-D Hyp-E Hyp-F Hyp-F Hyp-G Hyp-H Hyp-I Hyp-J Hyp-J Hyp-K Hyp-L	-2.609E-07 -2. -2.642E-07 -2. -4.796E-09 -8. 2.6892E-07 5.1 4.4314E-07 4.2 7.5176E-07 7.4 -6.832E-07 -7. 5.826E-07 -6. 5.6736E-07 6.4 2.7893E-07 5.4 6.1380E-08 1.8 3.5933E-07 4.5	022E-08 278E-08 642E-10 717E-08 204E-08 951E-08 079E-08 218E-08 693E-08 908E-08 377E-08 029E-08		•
4				P.

The composition and flow profiles is obtained by clicking on the appropriate icons on the button bar.



The temperature profile is shown below.



A McCabe-Thiele diagram can be obtained by clicking on the McCabe-Thiele icon on the button bar. We may also elect to select the McCabe-Thiele panel:

T ChemSep (TM) - Bishnoi_column01.sep									
<u>F</u> ile <u>E</u> dit <u>S</u> olve <u>A</u> nalysis <u>D</u> atabanks <u>T</u> ools <u>H</u> elp									
Title Tables	Graphs McCabe	-Thiele							
Operation     Operation     Aut     Properties	o-select key comp	oonents		Display	1				
Thermodynamic: Crite	rion Stripp	ing and K va	lues 🔻	Dispidy					
✓ Physical properti ✓ Reactions ⊂ Use	r selected key co	acted key components		Copy dat	а				
Feeds Ligh	t key Hyp-I		-	Lumped	ł				
				E Show a	ottinge				
Pressures Hea	vy key Hyp-I		~	1 0110W 3	stangs				
Heaters/Coolers Stage	Γκι	Ікн	IBV.	du*/dy	lu l	Гун	E-O'Connell	DV (m2/s)	
Efficiencies 2	0.171445	0.116275	1.474483	0.690188	0.972904	0.0270964	0.62063	2.0908E-06	
Sidestreams 3	0.219976	0.151096	1.455874	0.703812	0.961335	0.0386646	0.629396	2.1604E-06	
Column specs	0.258577	0.17909	1.443834	0.716497	0.945291	0.0547086	0.634795	2.2079E-06	
E-√ Results 5	0.287912	0.200515	1.435867	0.730013	0.923366	0.0766343	0.638247	2.2406E-06	
- Tables 6	0.311781	0.218029	1.429996	0.746128	0.893955	0.106045	0.640726	2.2655E-06	
Graphs 7	0.333698	0.23417	1.425026	0.766413	0.855425	0.144575	0.642778	2.2872E-06	
McCabe-Thiele 8	0.357101	0.25146	1.42011	0.792301	0.806456	0.193544	0.644759	2.3093E-06	
	0.386605	0.273334	1.414405	0.824969	0.746582	0.253418	0.646992	2.3357E-06	
Solve options	0.429666	0.305407	1.406864	0.864932	0.676803	0.323197	0.649837	2.3717E-06	
Paths 11	0.497432	0.356221	1.396415	0.911372	0.599941	0.400059	0.65362	2.4235E-06	
12	0.600101	0.433927	1.382953	0.961622	0.52024	0.47976	0.658299	2.4931E-06	
13	0.733363	0.535916	1.368428	1.011932	0.442097	0.557903	0.663184	2.5720E-06	
14	0.823736	0.605711	1.35995	1.045961	0.389664	0.610336	0.665966	2.6200E-06	
15	0.876839	0.646931	1.355381	1.070098	0.352949	0.647051	0.667431	2.6466E-06	
16	0.907499	0.670796	1.35287	1.086661	0.328127	0.671873	0.668214	2.6614E-06	
17	0.926211	0.685381	1.351381	1.097272	0.312387	0.687613	0.668663	2.6703E-06	
18	0.938779	0.695186	1.3504	1.103403	0.303304	0.696696	0.668946	2.6763E-06	
19	0.948287	0.702607	1.34967	1.10634	0.29888	0.70112	0.669147	2.6807E-06	-
							+		
<									
Saved Converged 6 iterations	C:\ChemS	ep_\chemsep	papers\Tuto	prial_Bishnoi_	Hypothetical	\Bishnoi_colu	mn01.sep		

*ChemSep* will select the key components to be used in this diagram, but it does not always make the best choice. The program contains three different criteria on which to base its selection of the keys:

Auto-select key components						
	Display					
Criterion	Stripping and K values 🛛 💌					
C Liser selected I	Stripping and K values	Copy data				
*5 0001 00100(0d 1	Largest mass transfer rates					
Light key	Net flux	Lumped				
Heavy key	n-Butane	Show settings				

In this particular case the best choice is given by using the *Stripping and K-values* as the criterion. The other options lead (in this case) to a different pair of compounds. Alternatively, one can select the key components directly.

Click on the *Display* button to see the actual McCabe-Thiele diagram shown below:



McCabe-Thiele diagram Hyp-H - Hyp-I

#### Discussion

The original paper of Shah and Bishnoi was ostensibly to describe how a computational method for solving column simulation problems developed by Y. Ishii and F.D. Otto (*Can. J. Chem. Eng.*, **51**, 601, 1973) could be improved so that it could be used to solve systems where the thermodynamic properties were obtained from cubic equations of state. They also documented some other improvements to the original method and illustrated its use by solving 5 example problems of which the one solved here was number 5. Shah and Bishnoi used a CDC CYBER 172 computer and they report that their computer program needed 6 iterations to solve this example in slightly less than 41 seconds. *ChemSep* also needed 6 iterations (although the methods are not exactly the same so any comparison is somewhat lacking in context) and less than one third of one second on a 1.8 GHz Dell Precision Laptop Computer. These numbers only provide a measure of how much computer technology has advanced from 1978 to 2011 when this tutorial was written.

More interesting, perhaps, is that Shah and Bishnoi reported that the Chao-Seader model failed to solve this particular problem. *ChemSep* will solve this simulation using the Chao-Seader model in the same number of iterations (6) and in about the same amount of computer time as is needed for the Peng-Robinson EOS. Shah and Bishnoi report that for columns at low temperatures the

results from the Chao-Seader model are very different from those with the SRK or PR equations of state. This conclusion does not appear to be valid In this particular case.

## Exercises

Repeat this simulation with the following changes:

- 1. The SRK EOS.
- 2. The Chao-Seader model.
- 3. Recreate the pure compound data bank but use other methods to estimate the various properties noted on the pseudo-compound generation panel. Do the simulaiton results differ very much if an alternative method was used for estimating the crtical temperature and pressure and the ideal gas heat capacity?