

ChemSep[™] - Exporting to Excel

New with Release 6.5 (December 15, 2009) Updated: July 2010

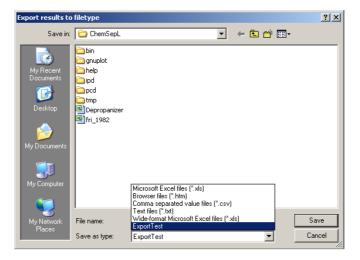
Harry Kooijman and Ross Taylor

ChemSep has long had the ability to export results to Microsoft Excel; but Version 6.5 takes the ability to export results to Excel to new levels of convenience. Here we describe how to get exactly what you want into Excel from ChemSep.

- 1. Example 1: Getting Started
- 2. Example 2: Inserting an Empty Column
- 3. Example 3: Calculating Columns
- 4. Example 4: Physical Properties
- 5. Example 5: Diffusion Coefficients
- 6. Example 6: Key components
- 7. Example 7: Design Parameters
- 8. Example 8: Internals performance parameters
- 9. Example 9: Conditional calculations
- 10. Example 10: Text messages
- 11. Example 11: Calculating the Efficiency of a Tray Column
- 12. Example 12: Calculating HETP for a Packed Column

A few notes before we start the tutorial.

- 1. It is possible to create an unlimited number of different export formats.
- 2. The file that defines the output format must begin with the word *Export* and ends with *.def* and must be saved in the bin folder of *ChemSep*.
- 3. The export definition file is case sensitive.


Example 1: Getting Started

Here is just a simple exercise to see how easy it is to design your own export format.

- 1. Open a text editor (e.g. Notepad whatever you do, don't use Word for this exercise)
- 2. Type what appears below (including the blank lines)

```
newsheet:
TabName
var:
stage
S
var:
Temperature
F
T
var:
Pressure
psia
p
newsheet:
Tab2
```

- 3. Save the above in a plain text file. The name of the file must begin with the word *Export*. The rest of the name is up to you (but we suggest that you don't stop with *Export*). The file extension must be *.def*.
- 4. Copy the saved file to the \chemsep\bin folder
- 5. Start ChemSep and load any sep file.
- 6. Go to the *File* menu, select the *Export results* option and you will see a list that includes the name of the .def file file that you created in steps 2-4 above. In the illustration below you will see the name *ExportTest* because we created a file called *ExportTest.def* when we wrote this tutorial.

- 7. Select the export option that you have created and click on the Save button.
- 8. If the file name that you chose already exists you will be asked if you wish to overwrite it. You will also be asked the following question:

Confirm				×
?	Do you want	to load the ge	enerated file ir	n Excel
	<u>Y</u> es	No	Cancel	

9. Click on yes to see the results of this exercise. The screen shot below shows what we have accomplished.

			1 0																	
_			el - Deproj	panize	:r														_	. <u> </u>
:B)	<u>File</u>	Edit				<u>T</u> ools	<u>D</u> ata	<u>W</u> indo	∾ <u>H</u> el	р					Т	ype a que	estion f	or help	• •	- 8 ×
8	1	00%	- 2	Arial			v 9	- 1	3 I	U	≣≣	1	•a• \$	%,	€.0 .00	.00	*	-	+ 🚯	A -
10-	dan tir	n (72)					a E seco		h Chana		E <u>n</u> d Revi									
:		g :42								Je2	LIUKEW	CVV								
	A1	_				SepL\D	epropa				-			_					_	
	A		В		C	D		E	F		G		Н			J		K		<u> </u>
			oL\Deprop										-							
			created o			1:54:091	-M by F	< l aylor	with Cr	iem5	ep (IM) v	/6.46	j						_	
	stage		lemperatu		sure									_					_	
4		F	•	psia								_		_					_	
6		1	93.67932	220	.4392		_							_					_	
7			101.3878		.4392														_	
8		-	104.1796		.4352							-		-						
9		-	105.4106		.1435									_						
10			106.3699		.4957															
11			107.6644		.8478															
12		7	109.796		222.2							-								
13			113.3388		.5521															
14		-	118.8297		.9043															
15		10	126.3533	223	.2564															
16		11	135.1274	223	.6086															
17		12	143.7523	223	.9607															
18		13	151.0914	224	.3129															
19		14	156.8532	22	4.665															
20		15	161.5131	225	.0172															
21		16	166.0379	225	.3693															
22			178.6357		.7216															-
H 4	• • •	TabN	lame / Tab	2/									•							
Read	у																N	UM		//

Now with that image before us we can see how the text file created above serves as the template for the Excel file we see in the screen shot.

The table below summarizes the meaning of each line of our export template. Items shown in bold in column 2 below are instructions and should not be changed.

Line	Text	Meaning
1	newsheet:	Instruction to create a new worksheet (tab sheet)
2	TabName	Name of the worksheet (tab sheet) created by the instruction above
3	var:	Instruction to populate a new column on the worksheet named on line 2
4	stage	Label that will appear on the top of the column (in row 3; rows 1 and 2 are reserved)
5		Line to enter the units to be used in the spreadsheet - empty because "stage" is dimensionless
6	S	Symbol for the stage index number
7	var:	Instruction to populate a new column on the worksheet
8	Temperature	Label that will appear on the top of the column (in row 3)
9	F	Units for the quantity to be displayed in this column
10	Т	Symbol for temperature
11	var:	Instruction to populate a new column on the worksheet
12	Pressure	Label that will appear on the top of the column (in row 3)
13	psia	Units for the quantity to be displayed in this column
14	р	Symbol for the pressure
15	newsheet:	Instruction to create a new worksheet (tab sheet)
16	Tab2	Name of the worksheet (tab sheet)

It can be seen that each tab page is created by two lines and each column is characterized by four lines in our template text file. The first line of the block of four is the instruction *var*. The second, third and fourth lines are text strings that specify, in order, the label to be written at the top of the column (2nd row of a block of four), the units to be used (3rd row), and the symbol (4th row) that denotes what *ChemSep* variable is to be written to the Excel file.

It is now straightforward to add columns with other variables; all we need to know are the variable names. A list of the main stage variables appears below.

Standard	ChemSep stage variables:
S	Stage number
x#	Liquid mole fraction for component #
xi#	Liquid interface mole fraction for component #
у#	Vapour mole fraction for component #
yi#	Vapour interface mole fraction for component #
K#	K-value for component #
Т	Temperature [K]
Tb	Bubble point temperature [K]
TL	Liquid temperature [K]
Ti	Interface temperature [K]
TV	Vapour temperature [K]
Td	Dew point temperature [K]
р	Pressure [Pa]
L	Liquid flow [kmol/s]
V	Vapour flow [kmol/s]
HL	Liquid enthalpy [kJ/kmol]
HV	Vapour enthalpy [kJ/kmol]
SL	Liquid entropy [kJ/kmol/K]
SV	Vapour entropy [kJ/kmol/K]
SP	Entropy production [kJ/kmol/K]
R#	Reaction rate for component # [kmol/s]
N#	Mass transfer rate for component # [kmol/s]
C#	Conversion for component # [kmol/s]
M#	Murphree efficiency for component #
FE	Baur Efficiency
FA	Baur Efficiency Angle
Z	Stage height [m]
WF	Fraction of weeping
FF	Fraction of flooding

Exercise: Add columns for the *molar* flow rates of liquid and gas/vapor.

Exercise: Try changing the units as follows: Temperature (F to C to K), pressure (psia to bar to atm).

Example 2: Inserting an empty column

How can you modify the above to create a spreadsheet with an empty column between the columns for temperature and pressure?

Given how the template is constructed (the four lines per variable) we can see that adding four lines (the first of which says *var:* and the remaining three being empty) should accomplish our goal (as long as we insert the four lines in the right place). Here is what we see when we do this correctly:

M	icrosoft E	xcel - I	Deprop	anizer										_ 🗆 🗵
:2)	<u>File E</u> di	t Viev	w Inse	rt Format	Tools	Data	Window	v Help			1	lype a questi	on for help	8 ×
		_		- Avial	-	-				= = a	0/ - +0	.00 = = =	- I	
	100	1% +	Ŧ	Arial		• 9	- 1	<u>s </u>		≡ <u>ख</u> ⇒	% * .0	→.0 11 = 1	F 🖽 🕈 🤇	2 · 🗛 · 🖻
1	22	2 6	> 🖄 🛙	I 🕉 🛛	1 🖳 🕞	₩4 F	Reply wit	h <u>⊂</u> hanges.	End Reviev	v 🚽				
	A1	-	;	& C:\Chen	nSepL\De	propa	nizer.s	ер						
	A		В	С	D		E	F	G	Н		J	K	
1	C:\Chem	3∉pL\E)epropa	nizer.sep										
2	This file v	vas cre	eated or	12/9/2009	2:37:13 P	M by F	RTaylor	with Chen	nSep (TM) v6	.46				
	stage	_	peratu		Pressure									
4		F			psia									
5						_								
6			67932		220.439	-								
7			1.3878		220.439									
8			4.1796		220.791									
9		_	5.4106		221.143	_								
10			6.3699 7.6644		221.495									
12		_	7.6644 09.796		221.847	_								
13			3.3388		222.552	_								
14		_	8.8297		222.904									
15			6.3533		223.256	-								
16			5.1274		223.608	_								
17			3.7523		223.960	-								
18		_	1.0914		224.312	_								+
19	1	4 15	6.8532		224.66	5								
20	1	5 16	1.5131		225.017	2								
21	1	6 16	6.0379		225.369	3								
22	1	7 17	8.6357		225.721	6								-
H 4	→ H\Ta	abNam	e / Tab2	2/						•				
Read	У												NUM	

Example 3: Calculating columns

The export mode is much more powerful than simply a means to print out the various things that are calculated during a *ChemSep* simulation. It is possible to combine quantities to compute something else that is of interest but that is not calculated directly. Mass flow rates are a case in point. *ChemSep* uses molar flows only while solving problems, very often it is the mass flows that are of more interest to the equipment designer. The mass flow rates can be obtained in Excel using the following additions to the template (again, in the appropriate place of course):

```
var:
Liquid flow rate
lb/h
L*$MwL
```

for the liquid phase, and

```
var:
Vapor flow rate
lb/h
V*$MwV
```

for the vapor phase.

Here the symbols for the vapor and liquid flow rates are simply multiplied by the molecular weights (symbols M_WL and M_WV). Note: the \$ sign does *not* imply constancy of anything here; it is just part of the symbol we use to denote the molecular weight and the fact that the molecular weight changes along the column is most definitely taken into account.

The illustration below shows our table now that we have added the mass flows (and removed the empty column of the last exercise).

M	licrosoft Exc	el - Deprop	oanizer									_ 🗆 🗵
ं 🛃	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indov	v <u>H</u> elp				Type a ques	tion for help	8 ×
	🏭 100%	- 1	Arial		9 - E	JU		-a- \$	% ,	.00	= +	🇞 - 🛕 - 💂
100	4n 4n 52						E <u>n</u> d Review.	-				
	0.1			_		r <u>C</u> hanges		·· 🗧				
	A1 A	B	C C	nSep\n-dep D	rop.sep E	F	G	Н	1	J	K	
1	A C:\ChemSe			U	E	Г	G	п		J	ĸ	┿╧
				3·10·14 PM	by RTaylory	with Cham	Bep (TM) v6.4	8				
				Liquid flow			0ep (1%) V0.4					
4	-	F	psia	•	lb/h	luto						
5												
6	1	73.56324	220.4392	323815	118097.2							
7	2	89.9348	220.4392	336377	453341							
8	3	99.94444	220.4392	344811.6	465755.2							
9	4	106.2074		348123	474360.1							
10	5	110.8143		349239.5	477727.4							
11	6	115.0176		347730.2	478976.4							
12	7	119.4805		346395.5	477374.1							
13	8	124.4725		345071	476675.5							
14	9	129.972		343739.5	474292.2							
16	10	135.7464	220.4392	343757.3 344099.8	474084.4							
17	12	146,7909		344099.8	473530.3							
18	13	151.5396		345809	474598.4							
19	14	155.6494		347527.8	476041.6							
20		159.1558		351456.2	477230							
21		152.6104		893009.3	480737.1							
22	17	166.4008	220.4392	944632.1	607207.1							-
H 4	→ → \ Tabl	Name / Tab	2/					4				
Read	ly .										NUM	

Hint: Remember that all of the variables listed in the tables that appear in this tutorial can be used in calculations to create new quantities.

Example 4: Physical Properties

We can also export physical properties as long as we use the proper key words: For example the following sequence:

```
var:
Liquid viscosity
Pa.s
$VisL
var:
Liquid density
kg/m3
$DsL
```

after the lines for the mass flow rates added above will give us:

		cel - n-depr									Type a questio	a fault ala	
믭		⊻iew Ins	_	<u>T</u> ools <u>D</u>	ata <u>W</u> indov								
	⊒ ੈ⊒	🕺 🛄 10	0% - ∵	Arial		• 9 • 1	B I U	E = :	≣ 🔤 \$	% *	.00 •.0	E 🖽 🗕 🗳	<mark>≫</mark> - <u>A</u> -
1		a 🗠 🏹	331	j 🖶 😥 '	🕬 Reply with	n ⊆hanges…	End Review.						
	A1	-	f∡ C:\Cher	nSep\n-dep	rop.sep								
	А	В	С	D	E	F	G	Н		J	K	L	M f
1	C:\ChemS	p\n-deprop	.sep										
2	This file wa	as created o	n 12/14/200	9 9:00:27 PN	A by rtaylor v	vith ChemS	ep (TM) v6.4	6					
3	stage	Temperatu	Pressure	Liquid flow	Vapor flow	Liquid Visc	Liquid Dens	sity					
4		С	psia	lb/h	lb/h	Pa.s	kg/m3						
5													
6	1	22.49652	220.4392	129312.5	47223.23	8.15E-05	471.9987						
7	2	32.44321	220.4392	135461.6	181037.5	6.77E-05	469.2196						
8	3	37.81891	220.4392	138905.4	187186.6	7.29E-05	467.4954						
9	4	40.83261	220.4392	140196	190630.4	7.51E-05	467.3646						
10	5	42.98901	220.4392	140246.2	191921	7.63E-05	468.3857						
11	6	45.09171	220.4392	139649.7	191971.2	7.7E-05	470.2046						
12	7	47.54422	220.4392	138784.7	191374.7	7.76E-05	472.5474						
13	8	50.50232	220.4392	137958.5	190509.7	7.82E-05	475.1014						
14	9	53.91632	220.4392	137429.7	189683.5	7.87E-05	477.5004						
15	10	57.56192	220.4392	137338.3	189154.7	7.92E-05	479.4353						
16	11	61.1301	220.4392	137650.3	189063.3	7.95E-05	480.782						
17	12	64.35312	220.4392	138197.8	189375.3	7.97E-05	481.6204						
18	13			138778.7	189922.8	7.99E-05							
19	14		220.4392	139301.5	190503.7	8E-05							
20	15			140963.8	191026.5	8.01E-05							
21	16			363389.2	192688.8	8.22E-05							
22	17		220.4392	383018.2	248404.7	8.07E-05							
23	18				268033.7	8.04E-05							
24	19	84.90231	220.4392	403450	279421.1	8.01E-05	478.841						
25	20				288465.5	7.97E-05							
26	21				296310.4	7.95E-05							
27		93.24481		424344.3	303253.4	7.92E-05	474.8522						
∢	→ N \Tab	Name / Tab	2/					•					► I

We can now add columns for all of the mixture properties once we know their names; a list (and their SI units) is given below. Note that two not entirely interchangeable names are available for the properties; both names can be used after a simulation using the nonequilibrium, the second is the only option following a simulation with the equilibrium stage model. The name appearing second in this table should normally be enclosed within [].

ChemSep Export Names for Physical Properties

\$DsL	RHOL	Liquid density [kg/m3]
\$DsV	RHOV	Vapor density [kg/m3]
\$Sigma	SIGMA	Surface tension [N/m]
\$VisL	VISL	Liquid viscosity [Pa.s]
\$VisV	VISV	Vapor viscosity [Pa.s]
\$MwL	MWV	Liquid mole weight [kg/kmol]
\$MwV	MWL	Vapor mole weight [kg/kmol]
\$CpL	CPL	Liquid heat capacity [kJ/kmol]
\$CpV	CPV	Vapor heat capacity [kJ/kmol]
\$TcL	TCL	Liquid thermal conductivity [J/K/m/s]
\$TcV	TCV	Vapor thermal conductivity [J/k/m/s]

Example 5: Diffusion Coefficients

Diffusion coefficients must be handled differently because they are properties of a binary pair of compounds:

To illustrate consider the following sequence of lines to be added to our export definition file:

```
var:
Diffusivity
m/s2
$Dv1,3
```

Now we see:

	1icrosoft Ex	cel - n-depr	'OD										_ 0 ×
: 🔳		View Ins		Tools D	ata Windov	v Help					Type a questio	n for beln	×
			_	_	_								
1	∃ ≵↓ :	KI 🛄 100	0% ▼ 🐺	Arial		• 10 • I	B I U	F B B	• <u>a</u> • \$	% •	.00 .0	: 🔛 🕶 🖞	🌺 • <u>A</u> • 💂
	1 to to 2	1 🔁 🖄 🛛	331	1 🖷 🔂 🛛	🚧 Reply with	n <u>C</u> hanges	End Review.						
	110	•	fx										
	A	В	C	D	E	F	G	Н	1	J	K	L	M .
1		ep\n-deprop	-				-						<u> </u>
2				9 9:11:42 PI	vi by rtaylor v	vith ChemS	ep (TM) v6.4	6					
3	stage	Temperatu	Pressure	Liquid flow	Vapor flow	Liquid Visc	Liquid Dens	Diffusivity					
4		С	psia	lb/h	lb/h	Pa.s	kg/m3	m/s2					
5													
6	1	22.49652		129312.5		8.15E-05	471.9987	4.15E-07					
7	2	32.44321	220.4392	135461.6	181037.5	6.77E-05	469.2196	4.32E-07					
8	3	37.81891	220.4392	138905.4	187186.6	7.29E-05	467.4954	4.42E-07					
9	4	40.83261	220.4392			7.51E-05	467.3646	4.47E-07					
10	5	42.98901	220.4392	140246.2	191921	7.63E-05	468.3857	4.53E-07		<u> </u>			
11	6	45.09171	220.4392	139649.7	191971.2	7.7E-05	470.2046	4.58E-07					
12	7	47.54422		138784.7	191374.7	7.76E-05	472.5474	4.65E-07					
13	8	50.50232		137958.5	190509.7	7.82E-05	475.1014	4.74E-07					
14	9	53.91632		137429.7	189683.5	7.87E-05	477.5004	4.83E-07					
15	10			137338.3		7.92E-05	479.4353	4.94E-07					
16	11	61.1301	220.4392	137650.3		7.95E-05	480.782	5.03E-07					
17	12	64.35312		138197.8	189375.3	7.97E-05	481.6204	5.12E-07					
18	13			138778.7	189922.8	7.99E-05	482.1456	5.19E-07					
19	14	69.3541	220.4392	139301.5	190503.7	8E-05	482.569	5.25E-07					
20	15			140963.8	191026.5	8.01E-05	483.0757	5.3E-07					
21	16			363389.2	192688.8	8.22E-05	490.1531	5.3E-07					
22	17	76.28201	220.4392	383018.2		8.07E-05	483.4591	5.4E-07					
23	18			394405.6	268033.7	8.04E-05	480.7109	5.48E-07					
 I4 _ •	→ → \ Tab	Name / Tab	2 /	402460	270421-1	0.015.05	470 0 41	5 55E 07					
Rea													
	,											1	

where we have added a column that contains the diffusivity between species 1 and 3 in the gas/vapor phase.

Exercise: Add a column for gas/vapor diffusivity for species 2 and 3.

Exercise: Add a column for liquid diffusivity for species 2 and 3 (symbol \$DsL).

Example 6: Key Components

The following illustrate how to find the key components. The output of each is a column containing a number of the designated key component that represents its position in the sequence of compounds.

```
var:
Light key
{LKEY}
var:
Heavy key
```

{HKEY}

The symbols {LKEY} and {HKEY} may be used as subscripts to obtain the diffusivity of the key component pair, as in: $DV{LKEY}$, {HKEY}

Example 7: Design Parameters

It is often desirable to output various equipment design parameters. We add the following lines to our export template:

```
var:
Diameter
m
{DS@P1}
var:
Area
m2
{DS@P1}^2*3.14/4
```

Now we see the diameter and the area appear in our spreadsheet.

N	1icrosoft Exc	el - n-depr	op										_ 🗆 🗙
: 🖼	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> ns	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indov	v <u>H</u> elp				1	lype a questi	on for help	8×
1		l 🛄 10	0% • 🕊	Arial		9 - 1	BIU	= = =	2 I I	% ,	.00 4 = 5	= 1 00 - A	• <u>A</u> •
					_			-	≡ <u></u>	70 , 00	→.0 3≓ 5;	- 🖂 🕶 🗡	· · 🗕 · 🖻
	1 1 1 2	🗠 🖄 🛛	S D 🕻	1 Ha (j2	🚧 Reply with	n <u>C</u> hanges	End Review.	·· 👳					
	A1	•	f∡ C:\Cher	nSep\n-dep	rop.sep								
	A	В	C	D	E	F	G	Н		J	K	L	M 🔒
1	C:\ChemSe	p\n-deprop	.sep										
2	This file was	s created o	n 12/14/200	9 9:22:56 PI	M by rtaylor v	vith ChemS	ep (TM) v6.4	6					
3		•		· ·	Vapor flow	•	-		Diameter	Area			
4		С	psia	lb/h	lb/h	Pa.s	kg/m3	m/s2	m	m2			
5													
6	1	22.49652				8.15E-05	471.9987	4.15E-07					
7	2	32.44321	220.4392	135461.6		6.77E-05	469.2196	4.32E-07					
8	3	37.81891	220.4392	138905.4	187186.6	7.29E-05	467.4954	4.42E-07	2.08				
9	4	40.83261	220.4392	140196		7.51E-05	467.3646	4.47E-07	2.08				
10 11	5	42.98901	220.4392		191921	7.63E-05	468.3857	4.53E-07					
11	6	45.09171	220.4392		191971.2	7.7E-05 7.76E-05	470.2046 472.5474	4.58E-07 4.65E-07	2.08				
13	8	47.54422 50.50232				7.82E-05	472.5474	4.65E-07 4.74E-07					
14	9	53.91632			189683.5	7.82E-05	475.1014	4.74E-07 4.83E-07	2.08				
15	10	57.56192		137429.7	189154.7	7.92E-05	479.4353	4.83E-07 4.94E-07	2.08				
16	11	61.1301	220.4392		189063.3	7.92E-05	480.782	4.94E-07 5.03E-07	2.00				
17	12	64.35312			189375.3	7.97E-05	481.6204	5.12E-07					
18	13	67.0932			189922.8	7.99E-05	482.1456	5.19E-07	2.08				
19	14	69.3541	220.4392			8E-05	482.569	5.25E-07	2.08				
20	15	71.2226				8.01E-05	483.0757	5.3E-07					
21	16	68.78812		363389.2	192688.8	8.22E-05	490.1531	5.3E-07	3.02				
22	17	76.28201	220.4392	383018.2	248404.7	8.07E-05	483.4591	5.4E-07	3.02	7.159514			
23	18	81.06372	220.4392	394405.6	268033.7	8.04E-05	480.7109	5.48E-07	3.02	7.159514			
24	10 • • • • • • • • •	04 00224 Name / Tab		402460	270421.1	0.01⊑.06	A70 0 A 1	6 665 07	2.02	7 160614			• •
• •		name A Tac	27					11					
Read	ay .												

It pays to spend some time to see how this was done:

Line	Text	Meaning
1	var:	Instruction to populate a new column in the worksheet
2	Diameter	Label that will appear on the top of the column
3	m	Line to enter the units to be used in the spreadsheet
4	{DS@P1}	Symbol for the first design parameter (this happens to be the diameter)
5	var:	Instruction to populate a new column on the worksheet
6	Area	Label that will appear on the top of the column
7	m2	Units for the quantity to be displayed in this column
8	{DS@P1}^2*3.14	Calculation of the area using the diameter (see line 4)

The symbol in line 4 is coded as follows: DS means Design Section, @ is a place holder for the column section number, and P1 means the first design parameter (and as noted this happens to be the diameter).

The conclusion we should draw from this exercise is that we can also output other design variables. What we get depends on what type of column internal we happen to have selected. That is: $\{DS@P4\}$ for a sieve tray column is the liquid flow path length, whereas $\{DS@P4\}$ for a column filled with some sort of random packing is the specific surface area of the packing. A complete list of the design parameters is given in the table below.

Internals Design Parameters in ChemSep

Design param	eters – all packing types
<u>{DS@P1</u> }	Column diameter
<u>{DS@P2</u> }	Height (of a stage)
~3	Name of packing
<u>{DS@P4</u> }	Specific packing surface
<u>{DS@P5</u> }	Void fraction
Design param	neters – random packing
<u>{DS@P6</u> }	Nominal size
<u>{DS@P7</u> }	Critical surface tension
<u>{DS@P8</u> }	Packing factor
Design param	neters – structured packing
<u>{DS@P6</u> }	Channel base
<u>{DS@P7</u> }	Crimp height
<u>{DS@P8</u> }	Channel side
<u>{DS@P9</u> }	Equivalent diameter
<u>{DS@P10</u> }	Channel flow angle
<u>{DS@P11</u> }	Packing factor
Design param	neters – all trays
<u>{DS@P1</u> }	Column diameter
<u>{DS@P2</u> }	Tray spacing
<u>{DS@P3</u> }	Number of passes
<u>{DS@P4</u> }	Liquid flow path length
<u>{DS@P5</u> }	Active area
<u>{DS@P6</u> }	Total hole area
<u>{DS@P7</u> }	Downcomer area
<u>{DS@P8</u> }	Hole diameter
<u>{DS@P9</u> }	Hole pitch
<u>{DS@P10</u> }	Weir length
<u>{DS@P11</u> }	Weir height
<u>{DS@P12</u> }	Weir type (1 = segmental
<u>{DS@P13</u> }	Notch depth or Weir diameter
<u>{DS@P14</u> }	Serration angle
<u>{DS@P15</u> }	Downcomer clearance
<u>{DS@P16</u> }	Deck thickness
<u>{DS@P17</u> }	Downcomer sloping
<u>{DS@P18</u> }	Downcomer length

Design model parameters (only if applicable)							
{SM@MTCP#}	Mass transfer coefficient parameter number #						
{SM@VFP#}	Vapor flow model parameter number #						
{SM@LFP#}	Liquid flow model parameter number #						
{SM@PDP#}	Pressure drop model parameter number #						
{SM@ENTP#}	Entrainment model parameter number #						
{SM@HLDP#}	Holdup model parameter number #						
{SM@DSNP#}	Design method parameter number #						

Example 8: Internals Performance Parameters

In the course of its calculations *ChemSep* computes many other quantities that can be exported to Excel. Some examples are shown below:

```
var:
Flow parameter
$Flv
var:
C-factor
m/s
$Cs
```

There are many such possible performance variables. The illustration below shows a few of them:

Slope	F-factor	ave F	HETP	Ave HETP	HTU	Ave HTU
			ft	ft	ft	ft j
0.279961	1.301995	1.300119	14.80015	3.673251	9.264678	2.617113
0.281857	1.349773	1.300119	10.95572	3.673251	6.973363	2.617113
0.282497	1.353693	1.300119	3.43523	3.673251	2.191808	2.617113
0.283023	1.353477	1.300119	3.601575	3.673251	2.300512	2.617113
0.28356	1.352823	1.300119	3.651686	3.673251	2.334934	2.617113
0.284125	1.3521	1.300119	3.656296	3.673251	2.340407	2.617113
0.284722	1.351344	1.300119	3.654439	3.673251	2.341896	2.617113
0.285355	1.350556	1.300119	3.651427	3.673251	2.342818	2.617113

In the partial screen shot above **slope** refers to the slope of the equilibrium line (symbol FS) and was obtained using this sequence:

var: Slope FS

The sequence below gives the HETP of each stage and the average section HETP

var: HETP ft [HETP] var: Ave HETP ft {AHETP1} Note the differences here: [HETP] reports the local (by stage) HETP; {AHETP#} reports the average HETP for column section #.

The other symbols used to create this screen shot appear in the more complete table below.

[
FS	Slope of the equilibrium line
[FFAC]	Superficial F-factor [m/s (kg/m3) ^{0.5}] (same as \$Fs)
{AFFAC#}	Average F-factor for column section # [m/s (kg/m3) ^{0.5}]
[HETP]	HETP [m]
{AHETP#}	Average HETP for column section # [m]
[HTU]	Height of an overall transfer unit [m]
{ AHTU# }	Average HTU for column section # [m]
\$Atot	Interfacial area [m2]
\$Avap	Vapor interfacial area [m2]
\$Aliq	Liquid interfacial area [m2]
\$tV	Vapor residence time [s]
\$tL	Liquid residence time [s]
\$NTUv# , #	Vapor Number of Transfer Units for components #,#
\$NTUl#,#	Liquid Number of Transfer Units for components #,#
\$HTCv	Vapor Heat Transfer Coefficient [J/K/m2/s]
\$HTCl	Liquid Heat Transfer Coefficient [J/K/m2/s]
\$Ml	Liquid mass flow [kg/s]
\$Mv	Vapor mass flow [kg/s]
\$Qv	Vapor volumetric flow rate [m3/s]
\$Ql	Liquid volumetric flow rate [m3/s]
\$Uv	Vapor velocity [m/s]
\$Ul	Liquid velocity [m/s]
\$Flv	Flow parameter
\$Vload	Vapor loading [m/s]
\$Qlw	Weir loading [m3/s/m]
\$Ud	Downcomer liquid velocity [m/s]
\$Fs	Superficial F-factor [m/s (kg/m3) ^{0.5}]
\$Csf	Capacity factor
\$Hwt	Wet liquid height [m]
\$Hcl	Clear liquid height [m]
\$Hr	Residual liquid height [m]
\$Hd	Dry pressure drop liquid height [m]
\$How	Height of liquid over the weir [m]
\$Hg	Liquid height gradient [m]
\$Hf	Height of the froth [m]
\$Hdb	Clear downcomer backup height [m]
\$PhiL	Fractional liquid entrainment
\$PhiV	Fractional vapour entrainment

Column Performance Variables in ChemSep

ŚDd	
\$Pd	Pressure drop (total) [Pa]
\$Dyndp	Pressure drop (dynamic) [Pa]
\$Statdp	Pressure drop (static) [Pa]
\$Qmw	Minimum wetting rate [m/s]
\$Ae	Liquid entrainment mass ratio
\$Alpha	Vapour fraction on the tray
\$Eps	Liquid fraction on the tray
\$Tv	Vapour residence time on the tray
\$T1	Liquid residence time on the tray
\$Uh	Hole velocity [m/s]
\$Fr	Froude hole number
\$Wflx	Weep flux [m3/s]
\$AlphaD	Vapour fraction in the downcomer
\$TimeD	Residence time of liquid in the downcomer
\$ff	Fraction of flooding
\$ffL	Fraction of flooding (Leva)
\$ffK	Fraction of flooding (Kister)
\$ffP	Fraction of flood (by packed design)
\$fMOC	Fraction of max. capacity (IMTP packing only)
\$WF	Fraction of Weeping
\$Fp	Packing Factor
\$KFp	Kister method packing Factor
\$Cs	C-Factor
\$Csult	Ultimate capacity
\$YLevaN	GPDC capacity (Leva 1992)
\$YKister	GPDC capacity (Strigle/Kister&Gill)
\$YNorton	GPDC capacity (Norton)
SF	System Factor
\$jetFF	Jet flood fraction
\$bkupFF	Downcomer backup flood fraction
\$dcckFF	Downcomer choke flood fraction
\$dcvFF	Downcomer velcoity flood fraction
\$dcrtFF	Downcomer residence time flood fraction
\$wlFF	Weir load flood fraction
\$Re	Reynolds number (packed columns)
\$Dia	Diameter
\$Area	Area
\$SecHt	Section height
\$Dp	Nominal size of packing
\$Ap	Specific area of packing

Example 9: Conditional Columns

The Flexible Export feature permits some simple conditional tests to be carried out. Here is an example:

```
var:
Diameter < 3m (1 if true)
!a=(3.0);!b=(1);!c=(0);limit1({DS@P1})
```

The first line is the usual instruction for a new column. The second line is a text string that will appear at the top of the column. The third line is empty because there are no units associated with the result (it is either true – to be indicated by the display of a 1, or not true, in which case we will see a 0).

The fourth line is the "if" test. The partial statement !a=(3.0) assigns to a the cutoff value for the test (3m). The phrase !b=(1) assigns the value to appear if the test result is true, and !c=(0) assigns the value to appear if the test is false. Finally, the test is actually carried out with the logical function limit1.

Here is the result of this when added to our earlier example (which happens to be the depropanizer test case that comes with *ChemSep*). In this example we can see that the result of the test is true for the rectifying section and not true for the stripping section. We can also confirm that the test has been carried out correctly since the diameter appears in the second last column. Also note that the cells for stages 1 and 30 are empty – as they should be since they represent the condenser and the reboiler respectively.

X N	Microsoft Excel - n-deprop																	
	<u>Eile E</u> dit															pe a question		
8) 📂 🔛 🗋		🛍 🖬 🕻	🏪 • 🗐 •	😫 Σ 🕶		100%	• 🕜 谋 !	Arial	•	- B.	<u>z</u> u	E = 3	-a- \$ %	• • • • • •		🔛 🕶 🎒	• <u>A</u> •
1		🗠 🖄 l	3 X I	8 Bh 😥 [Reply wit	h Changes	End Review											
	A1			nSep\n-dep			_	*										
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1	C:\ChemSe	p\n-deprop	.sep															
	This file wa																	
								-		Diameter <	3m (1 if true)							
4		С	psia	lb/h	ib/h	Pa.s	kg/m3	m/s2	m									
5 6		22.04.22	000 4000	129514.1	17005.00	0.475.07	170.0750	1465.07										
7	1		220.4392		47225.66		4/2.3/52		2.08	1								
8	3			138882.2					2.08	1								
9	-	41.82422		139992.4			468.6966		2.08	1								<u> </u>
10		44.45059		139868.5				4.57E-07	2.08	1								
11	6	47.1228		139184.4			472.38		2.08	1								
12	7			138408.2		7.81E-05			2.08	1								
13	8			137883.5	190213.8	7.87E-05	477.3458	4.83E-07	2.08	1								
14	9	57.38531	220.4392	137797.9	189689.1	7.91E-05	479.314	4.93E-07	2.08	1								
15	10	61.01901	220.4392	138140.6	189603.6	7.95E-05	480.6669	5.03E-07	2.08	1								
16	11	64.2883		138749.5			481.4708		2.08									
17		67.03781		139417.7			481.9161		2.08	1								
18				139983.1			482.2081		2.08									
19				140449.8				5.29E-07	2.08	1								
20	15			142614.7					2.08	1								
21 22		67.69711 75.47861		359683.5 380631.8			492.5812 484.8089		3.49	0								
22		80.28729		392566.5			481.5696		3.49	0								
23				401596.2			479,5314		3.49	0								
25	20		220.4392			7.99E-05			3.49	0								
26	20			415925.7					3.49	0								
27	22			421870.6			475.5022		3.49	0								
28	23			427120.7			474.4994		3.49	0								
29	24	95.84979	220.4392	431833.8	312216.8	7.9E-05	473.5832	5.74E-07	3.49	0								
30		97.17981		435143.2	316930		473.0829		3.49	0								
31		98.38611		438176.4				5.78E-07	3.49	0								
32	27			440689.5					3.49	0								L
33	28	100.548		442586.4			472.0516		3.49	0								L
34		101.6909		441463.5			472.0564		3.49	0								
35 36	30	104.4908	220.4392	114903.9	326559.6	7.76E-05	4/2.5278	5.93E-07										<u> </u>
			- /															
	Tabl	Name / Tab	2/								•							
Read	dy																	

Here is another example of a conditional column; in this case the test is slightly more sophisticated:

```
var:
Diameter 1:<2.0m 2:<3m 3:else
!a=(2.0);!b=(3);!c=(1);!d=(2);!e=(3);limit2({DS@P1})
```

Note that this is a three-way test. Can you guess what the outcome will be (*Hint:* the second line above is a text string).

Example 10: Text Messages

Finally, the Flexible Export feature permits printing text strings simply by preceding them with a single opening quote mark. Here is an example:

var: Message 'Hello, this is a message from ChemSep

The result is shown below (after adding this sequence to our export file and inserting an empty column before the message column).

🗓 Elle Edit View Insert Format Iools Data Window Help 🗸 🗗 🖉																		
1			1 651. I 🗈 👔	<mark>n.</mark> . 10 .	🔕 Σ -	41 Z1 14	100%	• 🕜 📜 :	Arial	- 9		BIU		-a- \$ %	· · · · · ·		3	- A
															· .00 ·	.u =- =-	1 <u></u>	-
	24		3915				End Review.	··· 👳										
J3		•	<i>f</i> ∗ Diamete	er 1:<2.0m (2:<3m 3:el:	se												
- A	۹,	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	
C:\Ch	nemSe	p\n-deprop	sep															
This f	file wa:	s created o	n 12/15/200	9 12:49:36 P	PM by rtaylor	r with Chem	Sep (TM) v6	.46										
stage	9	Temperatu	Pressure	Liquid flow	Vapor flow	Liquid Visc	Liquid Den	Diffusivity	Diameter	Diameter 1		Message						
		с	psia	lb/h	lb/h	Pa.s	kg/m3	m/s2	m									
	1	22.6123	220.4392	129514.1	47225.66	8.15E-05	472.3752	4.15E-07				Hello, this	is a messa	ge from Che	mSep			
	2	32.78812	220.4392	135578	181319.7	6.78E-05	469.8324	4.33E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	3	38.4462	220.4392	138882.2	187383.6	7.31E-05	468.4242	4.43E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	4	41.82422								2		Hello, this	is a messa	ge from Che	mSep			
	5	44.45059								2		Hello, this	is a messa	ge from Che	mSep			
	6	47.1228	220.4392	139184.4	191673.8	7.74E-05	472.38	4.64E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	7	50.1846	220.4392	138408.2	190990	7.81E-05	474.9162	4.73E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	8	53.67032		137883.5			477.3458			2		Hello, this	is a messa	ge from Che	emSep			
	9	57.38531	220.4392	137797.9	189689.1	7.91E-05	479.314	4.93E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	10	61.01901		138140.6	189603.6	7.95E-05	480.6669	5.03E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	11	64.2883	220.4392	138749.5	189946.3	7.97E-05	481.4708	5.12E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	12	67.03781	220.4392	139417.7	190555.1	7.99E-05	481.9161	5.19E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	13	69.25671		139983.1		8E-05	482.2081			2		Hello, this	is a messa	ge from Che	emSep			
	14	71.03741	220.4392	140449.8	191788.7	8E-05	482.5163	5.29E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	15	72.4986	220.4392	142614.7	192255.4	8.01E-05	482.978	5.33E-07	2.08	2		Hello, this	is a messa	ge from Che	emSep			
	16	67.69711	220.4392	359683.5	194420.4	8.31E-05	492.5812	5.3E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	17	75.47861	220.4392	380631.8	244779.6	8.11E-05	484.8089	5.4E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	18	80.28729	220.4392	392566.5	265727.9	8.06E-05	481.5696	5.48E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	19	84.03342	220.4392	401596.2	277662.7	8.02E-05	479.5314	5.54E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	20	87.1713	220.4392	409220	286692.3	7.99E-05	477.9654	5.59E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	21	89.8591	220.4392	415925.7	294316.2	7.96E-05	476.6474	5.64E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	22	92.1662	220.4392	421870.6	301021.8	7.94E-05	475.5022	5.68E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	23	94.14032	220.4392	427120.7	306966.8	7.92E-05	474.4994	5.71E-07	3.49	3		Hello, this	is a messa	ge from Che	emSep			
	24	95.84979					473.5832			3				ge from Che				
	25	97.17981		435143.2	316930		473.0829			3		Hello, this	is a messa	ge from Che	mSep			
	26	98.38611		438176.4			472.5956		3.49	3		Hello, this	is a messa	ge from Che	mSep			
	27	99.4837		440689.5			472.2398	5.8E-07		3		Hello, this	is a messa	ge from Che	mSep			
	28	100.548		442586.4	325785.6	7.63E-05	472.0516	5.82E-07	3.49	3		Hello, this	is a messa	ge from Che	mSep			
	29	101.6909					472.0564			3		Hello, this	is a messa	ge from Che	mSep			
	30	104.4908	220.4392	114903.9	326559.6	7.76E-05	472.5278	5.93E-07				Hello, this	is a messa	ge from Che	mSep			
► H	Tab	Name / Tab	2/		·						•						<u> </u>	

Example 11: Calculating the Efficiency of a Tray Column

The nonequilibrium model in *ChemSep* produces a great deal of information that can be used to calculate other things. Here we show how to set up a spreadsheet that will contain the results of a tray efficiency calculation.

The Murphree point efficiency for distillation in a tray column may be estimated from:

$$E_{oV} = 1 - \exp\left(-N_{oV}\right)$$

where E_{oV} is the Murphree point efficiency and N_{oV} is the overall number of transfer units. The latter may be calculated from:

$$\frac{1}{N_{oV}} = \frac{1}{N_V} + \frac{\lambda}{N_L}$$

where $\,N_{\rm V}\,$ and $\,N_{\rm L}\,$ are the numbers of transfer units for the vapor and liquid phases respectively and where

 $\lambda = m V / L$

is the stripping factor with m the slope of the equilibrium line.

In the foregoing sections we have seen that the *ChemSep* rate-based model can export each of the quantities needed for the calculation of the point efficiency. The table below shows (in column 2) the contents of a .def file to compute the Murphree point efficiency for the two key components. Strictly speaking only the first two and last 4 lines of this table are necessary; the others are included to provide context for the final calculation. Note that the equations above apply as written only to binary systems. It is common, however, to use them for multicomponent systems using the properties of the pair of key components (as discussed in *Example 6* of this tutorial).

Line	Text	Meaning
1	newsheet:	
2	Efficiency Calculation	
3	var:	
4	stage	
5		
6	S	Symbol for the stage index number
7	var:	
8	NV	
9		
10	<pre>\$NTUv{LKEY}, {HKEY}</pre>	Number of vapor transfer units
11	var:	
12	NL	
13		
14	<pre>\$NTU1{LKEY}, {HKEY}</pre>	Number of liquid phase transfer units
15	var:	
16	Stripping factor	
17		
18	FS	Symbol for the stripping factor
19	var:	
20	NOV	
21		
22	1/(1/\$NTUv{LKEY}, {HKEY} + FS / \$NTUl{LKEY}, {HKEY})	Overall number of transfer units
23	var:	
24	EOV	
25		
26	1-exp(-1/(1/\$NTUv{LKEY}, {HKEY} + FS / \$NTU1{LKEY}, {HKEY}))	Murphree point efficiency

The screen image below shows the result of the application of this example .def file to the calculation of the point efficiency for an industrial C4 splitter.

N	licrosoft Exe	cel - Klemol	a_neq_chai	n					
:2	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow <u>H</u> e	elp	_ 8 ×		
	🚆 Arial		• 10 •	B <i>I</i> <u>U</u>		- <u>A</u>	• =		
1.00	din tin (2	i 🚗 Xa I		8 🕪 🚓 i 🕬 🛶	- alu with Chae		•		
📴 🖆 🖾 🦾 🦾 🛛 🏷 🛛 🖄 🎭 👰 🛛 🕸 Reply with Changes									
	M6		fx						
	A	В	С	D	E	F	(<u> </u>		
1				Tesť\Klemola\Klei					
2	This file wa	s created or	n 6/14/2010	9:41:12 PM by rtay	ylor with Ch	emSep (TM) v6.62		
3	stage	NV	NL	Stripping factor	NOV	EOV			
4									
5									
6	1			0.000					
7	2	2.737	4.213	0.805	1.797	0.834			
8	3	2.900	4.084	0.806	1.844	0.842			
9	4	2.913	4.078	0.808	1.847	0.842			
10	5	2.917	4.077	0.809	1.848	0.842			
11	6	2.919	4.079	0.810	1.848	0.842			
12	7	2.920	4.082	0.811	1.848	0.842			
13	8	2.921	4.085	0.812	1.848	0.842			
14	9	2.921	4.089	0.814	1.847	0.842			
15	10	2.921	4.093	0.815	1.846	0.842			
16	11	2.920	4.098	0.817	1.846	0.842			
17	12	2.920	4.104	0.819	1.845	0.842	-		
4	→ → \ Effic	iency Calcu	lation /	•					
Read	ly								

Exercise: Extend this example in order to calculate the Murphree tray efficiency.

Example 12: Calculating the HETP of a Packed Column

The HETP of a packed column can be calculated from:

$$HETP = H_{OV} \frac{\ln \lambda}{\lambda - 1}$$

where H_{OV} is the overall height of a transfer unit and is obtained from

$$H_{OV} = H_V + \lambda H_L$$

with H_V and H_L the Heights of transfer units of the gas/vapor and liquid phases respectively. These quantities are defined by:

$$H_V = u_V / k_V a' \qquad H_L = u_L / k_L a'$$

where u_V and u_V are the superficial velocities of the respective phases, k_V and k_L are the mass transfer coefficients of the vapor and liquid phases (units m/s), and a' is the interfacial area density (units m²/m³).

The numbers of transfer units are defined as:

$$N_V = k_V a' t_V$$
 $N_L = k_L a' t_L$

The above allow the calculation of the heights of transfer units:

$$H_V = Z/N_V$$
 $H_L = Z/N_L$

where Z is the height of packing.

The table below shows (in column 2) the contents of a .def file to compute the Murphree point efficiency for the two key components. Strictly speaking only the first two and last 4 lines of this table are necessary; the others are included to provide context for the final calculation. Note that the equations above apply as written only to binary systems. It is common, however, to use them for multicomponent systems using the properties of the pair of key components (as discussed in *Example 6* of this tutorial).

Line	Text	Meaning
1	newsheet:	
2	HETP Calculation	
3	var:	
4	stage	
5		
6	S	Symbol for the stage index number
7	var:	
8	HV	
9		
10	Z/\$NTUv{LKEY},{HKEY}	Height of vapor phasetransfer units
11	var:	
12	HL	
13		
14	Z/\$NTUl{LKEY}, {HKEY}	Height of liquid phase transfer units
15	var:	
16	Stripping factor	
17		
18	FS	Symbol for the stripping factor
19	var:	
20	HOV	
21		
22	(Z/\$NTUv{LKEY}, {HKEY} + FS*Z/\$NTUl{LKEY}, {HKEY})	Overall height of transfer unit
23	var:	
24	HETP	
25		
26	(Z/\$NTUv{LKEY}, {HKEY} + FS*Z/\$NTUl{LKEY}, {HKEY})*ln(FS)/(FS-1)	HETP calculation